@

Recent
Publication

Wasai-Hara S, Minamisawa K, Cloutier S, Bromfield ESP. Strains of Bradyrhizobium cosmicum sp. nov., isolated from contrasting habitats in Japan and Canada possess photosynthesis gene clusters with the hallmark of genomic islands. Int J Syst Evol Microbiol. 2020;10.1099/ijsem.0.004380. doi:10.1099/ijsem.0.004380 [Web]

Siqueira A, Sugawara M, Arashida H, Minamisawa K, and Sánchez C. 2020. Levels of periplasmic nitrate reductase during denitrification are lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens. Microbes Enviorn 35: ME19129. [Web]

Wasai-Hara S, Hara S, Morikawa T, Sugawara M, Takami H, Yoneda J, Tokunaga T, and Minamisawa K. 2020. Diversity of Bradyrhizobium in non-leguminous sorghum plant: B. ottawaense isolates unique in genes for N2O reductase and lack of Type VI secretion system. Microbes Environ. 35: ME19102. [Web]

Yoneyama T, Terakado-Tonooka J, Bao Z, and Minamisawa K. 2019. Molecular analyses of the distribution and function of diazotrophic rhizobia and methanotrophs in the tissues and rhizosphere of non-Leguminous plants. Plants (Basel). 8(10): E408. [Web]

Sugawara M, Umehara Y, Kaga A, Hayashi M, Ishimoto M, Sato S, Mitsui H, and Minamisawa K. 2019. Symbiotic incompatibility between soybean and Bradyrhizobium arises from one amino acid determinant in soybean Rj2 protein. PLoS One. 14(9):e0222469. [Web]

Sánchez C and Minamisawa K. 2019. Nitrogen cycling in soybean rhizosphere: Sources and sinks of nitrous oxide (N2O).Front Microbiol. 10:1943. [Web]

Hara S, Matsuda M, and Minamisawa K. 2019. Growth stage-dependent bacterial communities in soybean plant tissues: Methylorubrum transiently dominated in the flowering stage of soybean shoot. Microbes Environ. 34: 446-450. [Web]

Sánchez C, Siqueira AF, Mitsui H, and Minamisawa K. 2019. Identification of genes regulated by the antitermination factor NasT during denitrification in Bradyrhizobium diazoefficiens. Microbes Environ. 34:260-267. [Web]

Hara S, Morikawa T, Wasai S, Kasahara Y, Koshiba T, Yamazaki K, Fujiwara T, Tokunaga T and Minamisawa K. 2019. Identification of nitrogen-fixing Bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses. Front. Microbiol. 10: 407. [Web]

Shinoda R, Bao Z, and Minamisawa K. 2019. CH4 oxidation-dependent 15N2 fixation in rice roots in a low-nitrogen paddy field and in Methylosinus sp. strain 3S-1 isolated from the roots. Soil Biol. Biochem. 132: 40-46. [Web]

Sugawara M, Takahashi S, Umehara Y, Iwano H, Tsurumaru H, Odake H, Suzuki Y, Kondo H, Konno Y, Yamakawa T, Sato S, Mitsui H, and Minamisawa K. 2018. Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity. Nature Communications 9: 3139. [Web]

Masuda S, Sasaki K, Kazam Y, Kisara C, Takeda S, Hanzawa E, Minamisawa K, and Sato T. 2018. Mapping of quantitative trait loci related to primary rice root growth as a response to inoculation with Azospirillum sp. strain B510. Commun. Integr. Biol. 11: 1-6. [Web]

Kusajima M, Shima S, Fujita M, Minamisawa K, Che FS, Yamakawa H, Nakashita H. 2018. Involvement of ethylene signaling in Azospirillum sp. B510-induced disease resistance in rice. Biosci Biotechnol Biochem. [Web]

Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET. 2018. Core microbiomes for sustainable agroecosystems. Nature Plants 4 : 247-257. [Web]

Sánchez C, Minamisawa K. 2018. Redundant roles of Bradyrhizobium oligotrophicum Cu-type (NirK) and cd1-type (NirS) nitrite reductase genes under denitrifying conditions. FEMS Microbiol Lett. 365. [Web]

Wasai S, and Minamisawa K. 2018. Plant-associated microbes: From rhizobia to plant microbiomes. Microbes Environ. 33: 1-3. [Web]

Yoneyama T, Terakado-Tonooka J, Minamisawa K. 2017. Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: a review and synthesis. Soil Science and Plant Nutrition, 63: 578-590. [Web]

Sugiyama A, Unno Y, Ono U, Yoshikawa E, Suzuki H, Minamisawa K, Yazaki K. 2017. Assessment of bacterial communities of black soybean grown in fields. Commun. Integr. Biol. [Web]

Mitsui H, Minamisawa K. 2017. Expression of two RpoH sigma factors in Sinorhizobium meliloti upon heat shock. Microbes Environ. 32: 394-397. [Web]

Konishi N, Okubo T, Yamaya T, Hayakawa T, Minamisawa K. 2017. Nitrate supply-dependent shifts in communities of root-associated bacteria in Arabidopsis. Microbes Environ. 32: 314-323. [Web]

Siqueira AF, Minamisawa K, Sánchez C. 2017. Anaerobic reduction of nitrate to nitrous oxide is lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens. Microbes Environ. 32: 398-401. [Web]

Sánchez C, Mitsui H, Minamisawa K. 2017. Regulation of nitrous oxide reductase genes by NasT-mediated transcription antitermination in Bradyrhizobium diazoefficiens. Environ Microbiol Rep. 2017 9: 389-396. [Web]

Fujita M, Kusajima M, Okumura Y, Nakajima M, Minamisawa K, Nakashita H. 2017. Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in tomato. Biosci Biotechnol Biochem. 81: 1657-1662. [Web]

Saeki Y, Nakamura M, Mason MLT, Yano T, Shiro S, Sameshima-Saito R, Itakura M, Minamisawa K, Yamamoto A. 2017. Effect of flooding and the nosZ gene in bradyrhizobia on bradyrhizobial community structure in the soil. Microbes Environ. 32:154-163. [Web]

Kanehara K, Minamisawa K. 2017. Complete genome sequence of Bradyrhizobium japonicum J5, isolated from a soybean nodule in Hokkaido, Japan. Genome Announc. 5: e01619-16. [Web]

Sugawara M, Tsukui T, Kaneko T, Ohtsubo Y, Sato S, Nagata Y, Tsuda M, Mitsui H, Minamisawa K. 2017. Complete genome sequence of Bradyrhizobium diazoefficiens USDA 122, a nitrogen-fixing soybean symbiont. Genome Announc. 5: e01743-16. [Web]

Akiyama, H, Y. Takada-Hoshino, M. Itakura, Y. Shimomura, Y. Wang, A Yamamoto, K. Tago1, Y. Nakajima, K. Minamisawa, and M. Hayatsu. 2016. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens. Scientific Reports 6: 32869. [Web]

Igai, K., M. Itakura, S. Nishijima, H. Tsurumaru, W. Suda, T. Tsutaya, E. Tomitsuka, K. Tadokoro, J. Baba, S. Odani, K. Natsuhara, A. Morita, M. Yoneda, A. R. Greenhill11, P. F. Horwood, J. Inoue., M. Ohkuma, Y. Hongoh, T. Yamamoto, P. M. Siba, M. Hattori, K. Minamisawa, M. Umezaki. 2016. Nitrogen fixation and nifH diversity in human gut microbiota. Scientific Reports 6: 31942. [Web]

Bao, Z, R. Shinoda, and K. Minamisawa. 2016. Draft genome sequence of Methylosinus sp. strain 3S-1, an isolate from rice root in a low-N paddy field. Genome A. 4: e00932-16. [Web]

Sasaki S, Minamisawa K, Mitsui H. 2016. A Sinorhizobium meliloti RpoH-regulated gene is involved in iron-sulfur protein metabolism and effective plant symbiosis under intrinsic iron limitation. J Bacteriol. 198:2297-2306. [Web]

Ohkama-Ohtsu N, Honma H, Nakagome M, Nagata M, Yamaya-Ito H, Sano Y, Hiraoka N, Ikemi T, Suzuki A, Okazaki S, Minamisawa K, Yokoyama T. 2016. Growth rate of and gene expression in Bradyrhizobium diazoefficiens USDA110 due to a mutation in blr7984, a tetR family transcriptional regulator gene. Microbes Environ. 31: 249-259. [Web]

Minami, T., M. Anda, H. Mitsui, M. Sugawara, T. Kaneko, S. Sato, S. Ikeda, T. Okubo, H. Tsurumaru, and K. Minamisawa. 2016. Metagenomic analysis revealed methylamine and ureide utilization of soybean-associated Methylobacterium. Microbes Environ. 31: 268-278. [Web]

Okubo, T., P. Piromyou, P. Tittabutr, N. Teaumroong, and K. Minamisawa. 2016. Origin and evolution of nitrogen fixation genes on symbiosis islands and plasmid in Bradyrhizobium. Microbes Environ. 31: 260-267. [Web]

Minami, T., Y. Ohtsubo, M. Anda, Y. Nagata, M. Tsuda, H. Mitsui, M. Sugawara, and K. Minamisawa. 2016. Complete genome sequence of Methylobacterium sp. strain AMS5, an isolate from a soybean stem. Genome Announc. 17;4(2). pii: e00144-16. [Web]

Minamisawa, K., H. Imaizumi-Anraku, Z. Bao, R. Shinoda, T. Okubo, and S. Ikeda. 2016. Are symbiotic methanotrophs key microbes for N acquisition in paddy rice root? Microbes Environ. 31: 4-10. [Web]

Masuda S., Z. Bao, T. Okubo, K. Sasaki, S. Ikeda, R. Shinoda, M. Anda, R. Kondo, Y. Mori, and K. Minamisawa. 2016. Sulfur fertilization changes the community structure of rice root-, and soil-associated bacteria. Microbes Environ. 31: 70-75. [Web]

Masuda S., M. Saito, C. Sugawara, M. Itakura, S. Eda, and K. Minamisawa. 2016. Identification of the hydrogen uptake gene cluster for chemolithoautotrophic growth and symbiosis hydrogen uptake in Bradyrhizobium diazoefficiens. Microbes Environ. 31: 76-78: [Web]

Tittabutr, P., S. Sripakdi, N. Boonkerd, W. Tanthanuch, K. Minamisawa, and N. Teaumroong. 2016. Possible role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Sinorhizobium sp. BL3 on symbiosis with mung bean and determinate nodule senescence. Microbes Environ. 30: 310-320. [Web]

Piromyou, P., P. Songwattana, T. Greetatorn, T. Okubo, K. Kakizaki, J. Prakamhang, P. Tittabutr, N. Boonkerd, N. Teaumroong, and K. Minamisawa. 2016. The Type III secretion system (T3SS) is a determinant for rice-endophyte colonization by non-photosynthetic Bradyrhizobium. Microbes Environ. 30: 291-300. [Web]

Hidaka, M., A. Gotoh, T. Shimizu, K. Minamisawa, H. Imamura. and T Uchida. 2015. Visualization of NO3−/NO2− dynamics in living cells by fluorescence resonance energy transfer (FRET) imaging employing a rhizobial two-component regulatory system. J. Biol. Chem. 291: 2260-2269. [Web]

Anda, M., Y. Ohtsubo, T. Okubo, M. Sugawara, Y. Nagata, M. Tsuda, K. Minamisawa, and H. Mitsui. 2015. Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome. Proceedings of the National Academy of Sciences, 112: 14343-14347. [Web]

Sakata, T., Y. Kanesaki, H. Yoshikawa, H. Tsurumaru, and T. Yamakawa. 2015. Draft genome sequence of Bradyrhizobium japonicum Is-1, which is incompatible with Rj2 genotype soybeans. Genome Announc. e01219-15. [Web]

Tsurumaru, H., Hashimoto, S., Okizaki, K., Kanesaki, Y., Yoshikawa, H., and Yamakawa, T. 2015. A putative T3SS effector encoded by the MA20_12780 gene in Bradyrhizobium japonicum Is-34 causes the incompatibility with Rj4 genotype soybeans. Appl. Environ. Microbiol. (in press) AEM.00823-15. [Web]

Iida, T., M. Itakura, M. Anda, M. Sugawara, T. Isawa, T. Okubo, S. Sato, K.Chiba-Kakizaki, and K. Minamisawa. 2015. Symbiosis island shuffling with abundant insertion sequences in the genomes of extra-slow-growing strains of soybean bradyrhizobia. Appl. Environ. Microbiol. 81:4143-4154. [Web]

Piromyou, P., T. Greetatorn, K. Teamtisong, T. Okubo, R. Shinoda, A. Nuntakij, P. Tittabutr, N. Boonkerd, K. Minamisawa, and N. Teaumroong. 2015. Preference of endophytic bradyrhizobia in different rice cultivars and the implication of rice endophyte evolution. Appl. Environ. Microbiol. 81: 3049-3061. [Web]

Okazaki, S., R. Noisangiam, T. Okubo, T. Kaneko, K. Oshima, M. Hattori, K. Teamtisong, P. Songwattana, P. Tittabutr, N. Boonkerd, K. Saeki, S. Sato, T. Uchiumi, K. Minamisawa, and N. Teaumroong. 2015. Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid. PLoS One. 10: e0117392. [Web]

Okubo, T., D. Liu, H. Tsurumaru, S. Ikeda, S. Asakawa, T. Tokida, K. Tago, M. Hayatsu, N. Aoki, K. Ishimaru, K. Ujiie, Y. Usui, H. Nakamura, H. Sakai, K. Hayashi, T. Hasegawa, and K. Minamisawa. 2015. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria. Front. Microbiol. 6: 136. [Web]

Tsurumaru, H., T. Okubo, K. Okazaki, M. Hashimoto, K. Chiba-Kakizaki, E. Hanzawa, H. Takahashi, N. Asanome, F. Tanaka, Y. Sekiyama, S. Ikeda, and K. Minamisawa. 2015. Metagenomic analysis of bacterial community associated with main root of sugar beet. Microbes Environ. 30: 63-69. [Web]

Ohkama-Ohtsu, N., S. Ichida, H. Yamaya, T. Ohwada, M. Itakura, Y. Hara, H. Mitsui, T. Kaneko, S. Tabata, K. Tejima, K. Saeki, H. Omori, M. Hayashi, T. Maekawa, Y. Murooka, S. Tajima, K. Simomura, M. Nomura, T. Uchiumi, A. Suzuki, Y. Shimoda, M. Abe, K. Minamisawa, Y. Arima, and T. Yokoyama. 2015. Peribacteroid solution of soybean root nodules partly induces genomic loci for differentiation into bacteroids of free-living Bradyrhizobium japonicum cells. Soil. Sci. Plant Nutri. (in press)

Ikeda, S., T. Tokida, H. Nakamura, H. Sakai, Y. Usui, T. Okubo, K. Tago, K. Hayashi, Y. Sekiyama, M. Hayatsu, T. Hasegawa, and K. Minamisawa. 2015. Characterization of leaf blade– and leaf sheath–associated bacterial community and assessment of their responses to environmental changes of CO2, temperature, and nitrogen levels under field conditions. Microbes Environ. 30: 51-62. [Web]

Unno, Y., T. Shinano, K. Minamisawa, and S. Ikeda. 2015. Bacterial community shifts associated with high abundance of Rhizobium spp. in potato roots under macronutrient-deficient conditions. Soil Biol. Biochem. 80: 232-236. [Web]

Sugawara, M., A. Hosoyama, A. Yamazoe, and M. Morikawa. 2015. Draft genome sequence of Acinetobacter calcoaceticus strain P23, a plant growth-promoting bacterium of Duckweed. Genome Announc. 3(1): e00026-15. [Web]

Okazaki, K., T. Iino, Y. Kuroda, K. Taguchi, H. Takahashi, T. Ohwada, H. Tsurumaru, T. Okubo, K. Minamisawa, and S. Ikeda. 2014. An assessment of the diversity of culturable bacteria from main root of sugar beet. Microbes Environ. 29: 220–223. [Web]

Shiina, Y., M. Itakura, H. Choi, Y. Saeki, M. Hayatsu, and K. Minamisawa. 2014. Relationship between soil type and N2O reductase genotype (nosZ) of indigenous soybean bradyrhizobia: nosZ-minus populations are dominant in Andosols. Microbes Environ. 29: 420-426. [Web]

Kamonluck, T., P. Songwattana, R. Noisangiam, P. Piromyou, N. Boonkerd, P. Tittabutr, K. Minamisawa, A. Nantagij, S. Okazaki, M. Abe, T. Uchiumi, and N. Teaumroong. 2014. Divergent Nod-containing Bradyrhizobium sp. DOA9 with a megaplasmid and its host range. Microbes Environ. 29: 370-376. [Web]

Okubo, T., S. Ikeda, K. Sasaki, K. Ohshima, M. Hattori, T. Sato, and K. Minamisawa. 2014. Phylogeny and functions of bacterial communities associated with field-grown rice shoots. Microbes Environ. 29: 329-332. [Web]

Sanchez, C., M. Itakura, T. Okubo, T. Matsumoto, H. Yoshikawa, A. Gotoh, M. Hidaka, T. Uchida, and K. Minamisawa. 2014. The nitrate-sensing NasST system regulates nitrous oxide reductase and periplasmic nitrate reductase in Bradyrhizobium japonicum. Environ. Microbiol.16: 3263-3274 [Web]

Bao, Z., T. Okubo, K. Kubota, Y. Kasahara, H. Tsurumaru, M. Anda, S. Ikeda, and K. Minamisawa. 2014. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl. Environ. Microbiol. 80: 5043-5052. [Web]. Selected as Spotlight in AEM!

Okubo, T., T. Tokida, S. Ikeda, Z. Bao, K. Tago, M. Hayatsu, H. Nakamura, H. Sakai, Y. Usui, K. Hayashi, T. Hasegawa, and K. Minamisawa. 2014. Effects of elevated carbon dioxide, elevated temperature, and rice growth stage on the community structure of rice root–associated bacteria. Microbes Environ. 29(2): 184-190[Web]

Okazaki, K., T. Iinno, Y. Kuroda, K. Taguchi, H. Takahashi, T. Ohwada, H. Tsurumaru, T. Okubo, K. Minamisawa, and S. Ikeda. 2014. An assessment of the diversity of culturable bacteria from the main root of the sugar beet. Microbes Environ. 29(2): 220-223[Web]

Bao, Z., A. Watanabe, K. Sasaki, T. Okubo, T. Tokida, D. Liu, S. Ikeda, H. Imaizumi-Anraku, S. Asakawa, T. Sato, H. Mitsui, and K. Minamisawa. 2014. A rice gene for microbial symbiosis, Oryza sativa CCaMK, reduces CH4 flux in a paddy field with low nitrogen input. Appl. Environ. Microbiol. 80(6): 1995-2003. [Web]. Selected as Spotlight in AEM!

Ikeda, S., K. Sasaki, T. Okubo, A. Yamashita, K. Terasawa, Z. Bao, D. Liu, T. Watanabe, J. Murase, S. Asakawa, S. Eda, H. Mitsui, T. Sato, and K. Minamisawa. 2014. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ. 29(1): 50-59. [Web]

Bao, Z., K. Sasaki, T. Okubo, S. Ikeda, M. Anda, E. Hanzawa, K. Kakizaki, T. Sato, H. Mitsui, and K. Minamisawa. 2013. Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field. Microbes Environ. 28: 487-490. [Web]

Takeshima, T., T. Hidaka, M. Wei, T. Yokoyama, K. Minamisawa, H. Mitsui, M. Itakura, T. Kaneko, S. Tabata, K. Saeki, H. Oomori, S. Tajima, T. Uchiumi, M. Abe, Y. Tokuji, and T. Ohwada. 2013. Involvement of a Novel Genistein-Inducible Multidrug Efflux Pump of Bradyrhizobium japonicum Early in the Interaction with Glycine max (L.) Merr. Microbes Environ. 28: 414-21. [Web]

Sasaki, K., S. Ikeda, T. Okubo, C. Kisara, T. Sato, and K. Minamisawa. 2013. Effects of plant genotype and nitrogen level on bacterial communities. Microbes Environ. 28: 391-395. [Web]

Sa´nchez, C., M. Itakura, H. Mitsui, and K. Minamisawa. 2013. Linked expression of nap and nos genes in a Bradyrhizobium japonicum mutant with increased N2O reductase activity. Appl. Environ. Microbiol. 79: 4178-4180. [Web]

Okubo, T., S. Fukushima, M. Itakura, K. Oshima, A. Longtonglang, N. Teaumroong, H. Mitsui, M. Hattori, R. Hattori, T. Hattori, and K. Minamisawa. 2013. Genome anlaysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica. Appl. Environ. Microbiol. 79: 2542-2551. [Web]

Itakura, M., Y. Uchida, H. Akiyama, Y. Takada-Hoshino, Y. Shimomura, S. Morimoto, K. Tago, Y. Wang, C. Hayakawa, Y. Uetake, C. Sa´nchez, S. Eda, M. Hayatsu, and K. Minamisawa. 2013. Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation. Nature Climate Change 3: 208-212. [Web]

Tsukui, T., S. Eda, T. Kaneko, S. Sato, S. Okazaki, K. Kakizaki-Chiba, M. Itakura, H. Mitsui, A. Yamashita, K. Terasawa, and K. Minamisawa. 2013. The type III secretion system of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean. Appl. Environ. Microbiol. 79: 1048-1051. [Web]

Okubo, T., S. Fukushima, and K. Minamisawa. 2012. Evolution of Bradyrhizobium-Aeschynomene mutualism: Living testimony of the ancient world or highly evolved state? Plant Cell Physiol. 53: 2000-2007. [Web]

Inaba S, F. Ikenishi, M. Itakura, M. Kikuchi, S. Eda, N. Chiba, C. Katsuyama, Y. Suwa, H. Mitsui, and K. Minamisawa. 2012. N2O emission from degraded soybean nodules depends on denitrification by Bradyrhizobium japonicum and other microbes in the rhizosphere. Microbes Environ. 27: 470-476. [Web]

Noisangiam R, Teamtisong K, Tittabutr P, Boonkerd N, Toshiki U, Minamisawa K, and Teaumroong N. Genetic diversity, symbiotic evolution, and proposed infection process of Bradyrhizobium strains isolated from root nodules of Aeschynomene americana L. in Thailand. Appl. Environ. Microbiol. 78: 6236-6250. [Web]

Okubo T, T. Tsukui, H. Maita, S. Okamoto, K. Oshima, T. Fujisawa, A. Saito, H.Futamata, R. Hattori, Y. Shimomura, S. Haruta, S. Morimoto, Y. Wang, Y. Sakai, M. Hattori, S. Aizawa, K. V. P. Nagashima, S. Masuda, T. Hattori, A. Yamashita, Z. Bao, M. Hayatsu, H. Kajiya-Kanegae, I. Yoshinaga, K. Sakamoto, K. Toyota, M. Nakao, M. Kohara, M. Anda, R. Niwa, P. Jung-Hwan, R. Sameshima-Saito, S. Tokuda, S. Yamamoto, S. Yamamoto, T. Yokoyama, T. Akutsu, Y. Nakamura, Y. Nakahira-Yanaka, Y. Takada Hoshino, H. Hirakawa, H. Mitsui, K. Terasawa, M. Itakura, S. Sato, W. Ikeda-Ohtsubo, N. Sakakura, E. Kaminuma and K. Minamisawa. 2012. Complete genome sequence of Bradyrhizobium sp. S23321: Insights into symbiosis evolution in soil oligotrophs. Microbes Environ. 27: 306-315. [Web]

Okubo T, S. Ikeda, A. Yamashita, K. Terasawa and K. Minamisawa. 2012. Pyrosequence read length of 16S rRNA gene affects phylogenetic assignment of plant-associated bacteria. Microbes Environ. 27: 204-208. [Web]

Hirayama, J., S. Eda, H. Mitsui, and K. Minamisawa. 2011. Nitrate-dependent N2O emissions from intact soybean nodules via denitrification by Bradyrhizobium japonicum bacteroids. Appl. Environ. Microbiol. 77: 8787-8790. [Web]

Ishii, S., S. Ikeda, K. Minamisawa, and K. Senoo. 2011. Nitrogen cycling in rice paddy environments: Past achievements and future challenges. Microbes Environ. 26: 282-292. [Web]

Kaneko, T., H. Maita, H. Hirakawa, N. Uchiike, K. Minamisawa, A. Watanabe, and S. Sato. 2011. Complete genome sequence of the soybean symbiont Bradyrhizobium japonicum strain USDA6T. Genes 2: 763-787. [Web]

Ikeda S., T. Okubo, N. Takeda, M. Banba, K. Sasaki, H. Imaizumi-Anraku, S. Fujihara, Y. Ohwaki, K. Ohshima, Y. Fukuta, S. Eda, H. Mitsui, M. Hattori, T. Sato, T. Shinano, and K. Minamisawa. 2011. OsCCaMK genotype determines bacterial communities in rice roots under paddy and upland field conditions. Appl. Environ. Microbiol. 77:4399-4405. [Web] [pdf]

Anda, M., S. Ikeda, S. Eda, T. Okubo, S. Sato, S. Tabata, H. Mitsui, and K. Minamisawa. 2011. Isolation and genetic characterization of Methylobacterium and Aurantimonas species from stems of hypernodulated soybeans. Microbes Environ. 26:172-180. [Web]

Eda, S., H. Mitsui, and K. Minamisawa. 2011. Involvement of the SmeAB multidrug efflux pump in resistance to plant antimicrobials and contribution to nodulation competitiveness in Sinorhizobium meliloti. Appl. Environ. Microbiol. 77: 2855-2862. [Web]

Borjigin, N., K. Furukawa, Y. Shimoda, S. Tabata, S. Sato, S. Eda, K. Minamisawa, and H. Mitsui. 2011. Identification of Mesorhizobium loti genes relevant to symbiosis by using signature-tagged mutants. Microbes Environ. 26: 165-171.[Web]

Ikeda, S., M. Anda, S. Inaba, S. Eda, S. Sato, K. Sasaki, S. Tabata, H. Mitsui, T. Sato, T. Shinano, and K. Minamisawa. 2011. Autoregulation of Nodulation Interferes with Impacts of Nitrogen Fertilization Levels on the Leaf-Associated Bacterial Community in Soybeans. Appl. Environ. Microbiol. 77: 1973-1980. [pdf] [Web]

Okabe, S., M. Oshiki, Y. Kamagata, N.Yamaguchi, M. Tokufuku, Y. Yawata, Y. Tashiro, N. Nomura, H. Ohta, M. Okuma, A. Hiraishi, K. Minamisawa. 2010. A great leap forward in microbial ecology. Microbes Environ. 25: 230-240 [Web]

Kawaguchi, M., and K. Minamisawa 2010. Plant-microbe communications for symbiosis. Plant Cell Physiol. 51: 1377-1380 [Web]

Ikeda, S.,T. Okubo, M. Anda, H. Nakashita, M. Yasuda, S. Sato, T. Kaneko, S. Tabata, S. Eda, A. Momiyama, K. Terasawa, H. Mitsui, and K. Minamisawa. 2010. Community- and genome-based views of plant-associated bacteria: Plant-bacterial interactions in soybean and rice. Plant Cell Physiol. 51: 1398-1410 [Web]

Sasaki, K., Ikeda, S., Eda, S., Mitsui, H., Hanzawa, E., Kisara, C., Kushida, A., Shinano, T., Minamisawa, K., and Sato, T. 2010. Impacts of plant genotype and nitrogen level on rice growth response to inoculation with Azospirillum sp. strain B510 under paddy field conditions. Soil Sci. Plant Nutr. 56: 636-644. [pdf]

Masuda, S., S. Eda, C. Sugawara, H. Mitsui, and K. Minamisawa. 2010. The cbbL gene is required for thiosulfate-dependent autotrophic growth of Bradyrhizobium japonicum. Microbes Environ. 25: 220-223.[Web]

Arunothayanan, H., M. Nomura, R. Hamaguchi, M. Itakura, K. Minamisawa, and S.Tajima. 2010. Copper metallochaperones are required for the assembly of bacteroid cytochrome c oxidase which is functioning for nitrogen fixation in soybean nodules. Plant Cell Physiol. 51: 1242-1246 [Web]

Masuda, S., S. Eda, S. Ikeda, H. Mitsui, and K. Minamisawa. 2010. Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum. Appl. Environ. Microbiol. 76: 2402-2409 [pdf]

Wei, M., K. Takeshima, T. Yokoyama, K. Minamisawa, H. Mitsui, M. Itakura, T. Kaneko, S. Tabata, K. Saeki, H. Ohmori, S. Tajima, T. Uchumi, M. Abe, S. Ishii, and T. Ohwada. 2010. Temperature-dependent expression of Type III secretion system genes and its regulation in Bradyrhizobium japonicum. Mol. Plant Microbe Interact. 23: 628-637 [Web]

Isawa, T., M. Yasuda, H. Awazaki, K. Minamisawa, S. Shinozask., and H. Nakshita. 2010. Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environ. 25: 58-61 [Web]

Kaneko, T., K. Minamisawa, T. Isawa, H. Nakatsukasa, H. Mitsui, Y. Kawaharada, Y. Nakamura, A. Watanabe, K. Kawashima, A. Ono, Y. Shimizu, C. Takahashi, C. Minami, Tsunakazu Fujishiro, Mitsuyo Kohara, Midori Katoh, Naomi Nakazaki, Shinobu Nakayama, M. Yamada, S. Tabata, and S. Sato. 2010. Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res. 17(1):37-50. [Web]

Yasuda, M., T. Isawa, K. Minamisawa, S. Shinozaki, and H. Nakashita. 2010. Effects of colonization of bacterial endophyte, Azospirillum sp. B510 on disease resistance in rice. Biosci. Biotechnol. Biochem. 73: 2595-2599.[Web]

Kawaharada Y., H. Kiyota, S. Eda, K. Minamisawa, H. Mitsui. 2010. Identification of the Mesorhizobium loti gene responsible for glycerophosphorylation of periplasmic cyclic beta-1,2-glucans. FEMS Microbiol Lett. 302:131-137.[Web]

Ikeda, S., T. Ohkubo, T. Kaneko, S. Inaba, T. Maekawa, S. Eda, S. Sato, S. Tabata, H. Mitsui, and K. Minamisawa. 2010. Community shifts of soybean stem-associated bacteria responding to different nodulation phenotypes and N levels. ISME J. 4(3):315-26. [Web][pdf]

Ikeda, S., T. Kaneko, T. Okubo, L. E. Rallos, S. Eda, H. Mitsui, S. Sato, Y. Nakamura, S. Tabata, and K. Minamisawa. 2009. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb. Ecol. 58: 703-714.[Web]

Sudtachat, N., N. Ito, M. Itakura, S. Masuda, S. Eda, H. Mitsui, Y. Kawaharada, and K. Minamisawa. 2009. Aerobic vanillate degration and C1 metabolism in Bradyrhizobium japonicum. Appl. Environ. Microbiol. 75: 5012-5017. [Web] [pdf]

Ohkubo, T., S. Ikeda, T. Kaneko, S. Eda, H. Mitsui, S. Sato, S. Tabata, and K. Minamisawa. 2009. Nodulation-dependent communities of culturable bacteria endophytes from stems of field-grown soybeans. Microbes Environ. 24: 253-258. [Web] [pdf] [Supplement]

Inaba, S., K. Tanabe, S. Eda, S. Ikeda, A. Higashitani, H. Mitsui, and K. Minamisawa. 2009. Nitrous oxide emission and microbial community in the rhizosphere of nodulated soybeans during the late growth period. Microbes Environ. 24: 64-67. [Web][pdf][Supplement]

Prakamhang, J., K. Minamisawa, K. Teamtaisong, N. Boonkerd, and N. Teaumroong. 2009. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl. Soil Ecol. 42:141-149 [Web]

Terahara, T., S. Ikeda, C. Noritake, K. Minamisawa, K. Ando. S Tsuneda, and S. Harayama. 2009. Molecular diversity of bacterial chitinases in arable soils and the effects of environmental factors on the chitinolytic bacterial community. Soil Biol. Biochem. 41:473-480. [Web]

Itakura, M., K. Saeki, H., Omori, T. Yokoyama, T. Kaneko, S. Tabata, T. Ohwada, S. Tajima, T. Uchiumi, K. Honnma, K. Fujita, H. Iwata, Y. Saeki, Y. Hara, S. Ikeda, S. Eda, H. Mitsui, and K. Minamisawa. 2009. Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. ISME J. 3: 326-339. [Web] [pdf]

Ikeda, S., L. E. E. Rallos, S. Inaba, S. Eda, H. Mitsui, and K. Minamisawa. 2008. Microbial community analysis of field-grown soybeans with different nodulation phenotypes. Appl. Environ. Microbiol. 74: 5704-5709.[Web]

Wei, M., T. Yokoyama, K. Minamisawa, H. Mitsui, M. Itakura, T. Kaneko, S. Tabata, K. Saeki, H. Omori, S. Tajima, T. Uchiumi, M. Abe, T. Ohwada. 2008. Soybean seed extracts preferentially express genomic loci of Bradyrhizobium japonicum in the initial interaction with soybean, Glycine max (L.) Merr. DNA Res. 15: 201-214.[Web]

Itakura, M., K. Tabata, S. Eda, H. Mitsui, K. Murakami, J. Yasuda, and K. Minamisawa. 2008. Generation of Bradyrhizobium japonicum mutants with increased N2O reductase activity by selection after introduction of a mutated dnaQ gene. Appl. Environ. Microbiol. 74: 7258-7264.[Web][pdf]

Kawaharada, Y., H. Kiyota, S. Eda, K. Minamisawa, and H. Mitsui. 2008. Structural characterization of neutral and anionic glucans from Mesorhizobium loti. Carbohydr. Res. 343: 2422-7.[Web]

Shimoda, Y, H. Mitsui, H. Kamimatsuse, K. Minamisawa, E. Nishiyama, Y. Ohtsubo, Y. Nagata, M. Tsuda, S. Shinpo, A. Watanabe, M. Kohara, M. Yamada, Y. Nakamura, S. Tabata, and S. Sato. 2008. Construction of signature-tagged mutant library in Mesorhizobium loti as a powerful tool for functional genomics. DNA Res. 15: 297-308. [Web]

Saito, A., M. Kawahara, S. Ikeda, M. Ishimine, S. Akao, and K. Minamisawa. 2008. Broad distribution and phylogeny of anaerobic endophytes of cluster XIVa clostridia in plant species including crops. Microbes Environ. 23: 73-80.[Web]

Dao, T. V., M. Nomura, R. Hamaguchi, K. Kato, M. Itakura, K. Minamisawa, S. Sinsuwongwat, H. T. Le, T. Kaneko, S. Tabata, and S. Tajima. 2008. NAD-Malic enzyme affects nitrogen fixing activity of Bradyrhizobium japonicum USDA 110 bacteroids in soybean nodules. Microbes Environ. 23: 215-220.[Web]

Nonaka, S., M. Sugawara, K. Minamisawa, K. Yuhashi, and H. Ezura. 2008. 1-Aminocyclopropane-1-carboxylate deaminase enhances Agrobacterium tumefaciens-mediated gene transfer into plant cells. Appl. Environ. Microbiol. 74: 2526-8. [Web]

Nonaka, S., K. Yuhashi, K. Takada, M. Sugawara, K. Minamisawa, and H. Ezura. 2008. Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytol. 178: 647-56.[Web]

Kawaharada Y., S. Eda, K. Minamisawa, and H. Mitsui. 2007. A Mesorhizobium loti mutant with reduced glucan content shows defective invasion of its host plant Lotus japonicus. Microbiology 153 (12) 3983-3993. [Web] .

Saito, A., S. Ikeda, H. Ezura, and K. Minamisawa. 2007. Microbial community analysis of the phytosphere using culture-independent methodologies. Microbes Environ. 22 (2):93-105. [pdf]

Okazaki, S., M. Sugawara, K. Yuhashi, and K. Minamisawa. 2007. Rhizobitoxine-induced chlorosis occurs in coincidence with methionine deficiency in soybeans. Annals Botany 100 : 55-59. [pdf]

Ikeda, S., S. Fuji, T. Sato, H. Furuya, H. Naito, N. Ytow, H. Ezura, K. Minamisawa, and T, Fujimura. 2007. Analysis of microbial diversity in milled rice using culture independent methods. Microbes Environ. 22 (2): 165-174. [pdf]

Ikeda, S., N. Ytow, H. Ezura, K. Minamisawa, K. Miyashita and T, Fujimura. 2007. Analysis of molecular diversity of bacterial chitinase genes in the maize rhizosphere using culture-independent methods. Microbes Environ. 22 (1) :71-77. [pdf]

Sugawara, M., R. Haramaki, S. Nonaka, H. Ezura, S. Okazaki, S. Eda, H. Mitsui, and K. Minamisawa. 2007. Rhizobitoxine production in Agrobacterium tumefaciens C58 by Bradyrhizobium elkanii rtxACDEFG genes. FEMS Microbiol. Lett. 269: 29-35. [pdf].

Ito, N. , M. Itakura, S. Eda, K. Saeki, H. Oomori, T. Yokoyama, T. Kaneko, S. Tabata, T. Oowada, S. Tajima, T. Uchiumi, E. Masai, M. Tsuda, H. Mitsui, and K. Minamisawa. 2006. Global gene expression in Bradyrhizobium japonicum cultured with vanillin, vanillate, 4-hydroxybenzoate, and protocatechuate. Microbes Environ. 21 (4): 240-250. [pdf]

Ikeda, S., T. Omura, N. Ytow, H. Komaki, K. Minamisawa, H. Ezura, and T. Fujimura. 2006. Microbial community analysis in the rhizosphere of a transgenic tomato that overexpresses 3-hydroxy-3-methylglutaryl coenzyme A reductase. Microbes Environ. 21 (4): 261-271. [pdf]

Sameshima-Saito, R., K. Chiba, and K. Minamisawa. 2006. Correlation of denitrifying capability with the existence of nap, nir, nor and nos genes in diverse strains of soybean bradyrhizobia. Microbes Environ. 21 (3): 174-184. [pdf]

Nukui, N., K. Minamisawa, S. Ayabe, and T. Aoki. 2006. Expression of 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl. Environ. Microbiol. 72 (7): 4964-4969. [pdf]

Ikeda, S., S. Fujim, S. Sato, N. Ytow, H. Ezura, K. Minamisawa, and T. Fujimura. 2006. Community analysis of seed-associated microbes in forage crops using culture-independent methods. Microbes Environments 21 (2): 112-121. [pdf]

Tanaka, K., T. Shimizu, M. Zakrai, J. Nojoma, Y. Saeki, M. Sakai, T. Yamakawa, K. Minamisawa, and S. Akao. (2006) Incorporation of a DNA sequence encoding green fluorescent protein (GFP) into endophytic diazotroph from sugarcane and sweet potato and the colonizing ability of these bacteria in Brassica oleracea. Microbes Environments 21 (2): 122-128. [pdf]

Li X, S. Eda, and T. Nakae. 2006. Organic solvent-selective domain of the resistance-nodulation-division-type xenobiotic-antibiotic transporters of Pseudomonas aeruginosa. Microbiology and Immunology 50 (1): 53-56.

Eda S, H. Maseda, E. Yoshihara, and T. Nakae. 2006. Assignment of the outer-membrane-subunit-selective domain of the membrane fusion protein in the tripartite xenobiotic efflux pump of Pseudomonas aeruginosa. FEMS Microbiology Letters 254 (1): 101-107.

ด…—FA–L—ขŠwA‹vj‘ื‘ใAฒ”Œ—Yˆ๊A“์เV@‹†A’†ผN”ŽANjoloma Joyce PricaA–พฮ—วAิ”๖Ÿˆ๊˜Y (2006) ƒTƒgƒEƒLƒr‚ษฺŽํ‚ต‚ฝ’‚‘fŒล’่ƒGƒ“ƒhƒtƒ@ƒCƒgHerbaspirillum‚ฬ“ฎ‘ิ’วี‚ฬ‚ฝ‚฿‚ฬ—ฮFŒuŒ๕ƒ^ƒ“ƒpƒNŽฟ‚ฬ—˜—pA“y‚ฦ”๗ถ•จ 60 (1): 3-9.

Sugawara, M., S. Okazaki, N. Nukui, H. Ezura, H. Mitsui, and K. Minamisawa. (2006) Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnology Advances. 24:382-388. [pdf]

Saito, A., and K. Minamisawa. (2006) Evaluation of nitrogen fixation capability of endophytic clostridia by acetylene reduction and reverse transcription-PCR targeted to nifH transcript and ribosomal RNA. Microbes Environ. 21:23-35. [pdf]

Ikeda, S., N. Ytow, H. Ezura, K. Minamisawa, and T. Fujimura. (2006) Soil microbial community analysis in the environmental risk assessment of transgenic plants. Plant Biotechnology 23:137-151. [pdf]

Sameshima-Saito, R., K. Chiba, J. Hirayama, M. Itakura, H. Mitsui, S. Eda, and K. Minamisawa. (2006) Symbiotic Bradyrhizobium japonicum reduces N2O surrounding the soybean root system via nitrous oxide reductase. Appl. Environ. Microbiol. 72:2526-2532. [pdf]

You, M., Nishiguchi, T., Saito, A., Isawa, T., Mitsui, H., Minamisawa K. (2005) Expression of the nifH gene of a Herbaspirillum endophyte in wild rice species: daily rhythum during the light-dark cycle. Appl. Environ. Microbiol. 71: 8183-8190. [pdf]

Sato, Y., Monincova, M., Chaloupkova, R., Prokop, Z., Ohtsubo, Y., Minamisawa, K., Tsuda, M., Damborsky, J., Nagata, J. (2005) Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities. Appl. Environ. Microbiol. 71: 4372-4379.

Shibata S., Mitsui H., and Kouchi H. (2005) Acetylation of a fucosyl residue at the reducing end of Mesorhizobium loti Nod factors is not essential for nodulation of Lotus japonicus. Plant Cell Physiol. 46: 1016-1020. [pdf]

Takada, K., K. Ishimaru, K. Minamisawa, H. Kamada, and H. Ezura. (2005) Expression of a mutated version of the melon ethylene receptor gene Cm-ERS1/H69A affects stamen development in Nicotiana tabacum. Plant Science 169: 935-942.

Ye, B., Saito, A., Minamisawa, K. (2005) Effect of inoculation with anaerobic nitrogen-fixing consortium on salt tolerance of Miscanthus sinensis. Soil Sci. Plant Nutr. 51: 243-249.

Ohta, H., R. Hattori, Y. Ushiba, H. Mitsui, M. Ito, H. Watanabe, A. Tonosaki and T. Hattori (2004) Sphingomonas oligophenolica sp. nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int. J. Syst. Evol. Microbiol. 54: 2185-2190.[pdf]

Ikeda, S., KN. Watanabe, K. Minamisawa, and N. Ytow (2004) Evaluation of soil DNAs from arable lands in Japan with a modified direct extraction method. Microbes Environment. 19: 301-309. [pdf]

Miyamoto, T., M. Kawahara, and K. Minamisawa (2004) Novel endophytic nitrogen-fixing clostrdia from the grass Miscanthus sisnensis as revealed by terminal restriction fragment length polymorphism analysis. Appl. Environ. Microbiol. 70: 6580-6586. [pdf]

Okazaki, S., N. Nukui, M. Sugawara, and K. Minamisawa (2004) Rhizobial strategies to enhance symbiotic interactions: Rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes Environ. 19: 99-111. [pdf]

Minamisawa, K., K. Nishioka, T. Miyaki, B. Ye, T. Miyamoto, M. You, A. Saito, M. Saito, W. L. Barraquio, N. Teaumroong, T. Sein, and T. Sato (2004) Anaerobic nitrogen-fixing consortia consisting of clostridia isolated from gramineous plants Appl. Environ. Microbiol. 70: 3096-3102. [pdf]

Sameshima-Saito, R., K. Chiba, and K. Minamisawa (2004) New method of denitrification analysis of Bradyrhizobium field isolates by gas chromatographic determination of 15N-N2. Appl. Environ. Microbiol. 70: 2886-2891. [pdf]

Uchiumi, T., T. Ohwada, M. Itakura, H. Mitsui, N. Nukui, P. Dawadi, T. Kaneko, S. Tabata, T. Yokoyama, T. Tejima, K. Saeki, H. Omori, M. Hayashi, T. Maekawa, R. Sriprang, Y. Murooka, S. Tajima, K. Simomura, M. Nomura, A. Suzuki, Y. Shimoda, K. Sioya, M. Abe, and K. Minamisawa (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J. Bacteriol. 186: 2439-2448. [pdf]

Mitsui H., T. Sato, Y. Sato, N. Ito, and K. Minamisawa (2004) Sinorhizobium meliloti RpoH1 is requiered for effective nitrogen-fixing symbiosis with alfalfa. Mol. Gen. Genomics 271: 416-425. [pdf]

Nukui, N., H. Ezura, and K. Minamisawa (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection treads and nodule primordia. Plant Cell Physiol. 45: 427-435. [pdf]

Okazaki, S., M. Sugawara, and K. Minamisawa (2004) Bradyrhizobium elkanii rtxC gene is required for expression of symbiotic phenotypes in the final step of rhizobitoxine biosynthesis. Appl. Environ. Microbiol. 70: 535-541. [pdf]

Shutsrirung, A., T. Yokoyama, K. Senno, S. Tajima, K. Minamisawa, R. Sameshima, A. Bhromsiri, and M. Hisamatsu (2003) Genetic diversity of native Bradyrhizobium population in soybean-growing areas of Northern Thailand. Soil Sci. Plant Nutr. 49:255-265

Okazaki, S., K.Yuhashi, and K.Minamisawa (2003) Quantitative and time-course evaluation of nodulation competitiveness of rhizobitoxine-producing Bradyrhizobium elkanii. FEMS Microbiol. Ecol. 45:155-160. [pdf]

Sameshima, R., T.Isawa, M. J. Sadowsky, T.Hamada, H. Kosai, A. Shutsrirung, H. Mitsui, and K. Minamisawa (2003) Phylogeny and distribution of extra-slow-growing Bradyrhizobium japonicum harboring high copy numbers of RSa, RSb and IS1631. FEMS Microbiol. Ecol. 44:191-202. [pdf]

Kaneko, T., Y. Nakamura, S. Sato, K. Minamisawa, T. Uchiumi, S, Sasamoto, A. Watabnabe, K. Idesawa, M. Iriguchi, K. Kawashima, M. Kohara, M. Matsumoto, S. Shimpo, H. Tsuruoka, T. Wada, M. Yamada, and S. Tabata (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Research. 9: 189-197. [pdf]

Kaneko, T., Y. Nakamura, S. Sato, K. Minamisawa, T. Uchiumi, S, Sasamoto, A. Watabnabe, K. Idesawa, M. Iriguchi, K. Kawashima, M. Kohara, M. Matsumoto, S. Shimpo, H. Tsuruoka, T. Wada, M. Yamada, and S. Tabata (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 (Supplement). DNA Research. 9: 225-256. [pdf]

Minamisawa, K., M. Itakura, M. Suzuki, K. Ichige, T. Isawa, K. Yuhashi, and H. Mitsui (2002): Horizontal transfer of nodulation genes in soils and microcosms from Bradyrhizobium japonicum to B. elkanii. Microb. Environ. 17: 82-92. [pdf]

Abstract
Full text
PDF

Elbeltagy, A., K. Nishioka, T. Sato, H. Suzuki, B. Ye, T. Hamada, T. Isawa, H. Mitsui, and K. Minamisawa (2001): Endophytic colonization and in planta nitogen fixation by a Herbaspirillum sp. isolated from wild rice sprcies. Appl. Environ. Microbiol. 67:5285-5293

Abstract
Full text
PDF

Yasuta, T., S. Okazaki, H. Mitsui, H. Yuhashi, H. Ezura, and K. Minamisawa (2001): DNA Sequence and mutational Analysis of Rhizobiotoxin Biosynthesis Genes in Bradyrhizobium elkanii. Appl. Environ. Microbiol. 67:4999-5009.

Abstract
Full text
PDF(408KB)

Ono Y., H. Mitsui, T. Sato, and K. Minamisawa (2001): Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti. Mol. Gen. Genet. 264:902-912

Abstract
Full text
PDF

Constancio A., M. Kubota, K. Minamisawa, and S. Akao (2000): Analysis of the Bradyrhizobium nod gene-inducers from soybean super/hypernodulating mutants. Soil. Microorganisms 54:81-86.

Yagi K., T. Matsumoto, T. Chujo, H. Nojiri, T. Omori, K. Minamisawa, M. Nishiyama, and H. Yamane (2000): Isolation and characterization of low-indole-3-acetic acid-producing mutants from Bradyrhizobium elkanii. Biosci. Biotechnol. Biochem. 64: 1359-1364.

Abstract
Full text
PDF

Elbeltagy, A., K. Nishioka, H. Suzuki, T. Sato, Y. Sato, H. Morisaki, H. Mitsui, and K. Minamisawa (2000): Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46:617-629

Nukui N., H. Ezura, K. Yuhashi, T. Yasuta, and K. Minamisawa (2000): Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol. 41:893-897

Abstract
Full text
PDF

Ezura, H., N. Nukui, K. Yuhashi, and K. Minamisawa (2000): In vitro plant regeneration in Macroptilium atropurpureum, a legume with a board symbiont range for nodulation. Plant Sci. 159: 21-27

Abstract
Full text
PDF (505 K)

Yuhashi, K, N. Ichikawa, H. Ezura, S. Akao, Y. Minakawa, N. Nukui, T. Yasuta, and K. Minamisawa K (2000): Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl. Environ. Microbiol. 66: 2658-2663

Abstract
Full text
PDF

Yokoyama, T., N. Kobayashi, H. Kouchi, K. Minamisawa, H. Kaku, and K. Tsuchiya (2000): A lipochito-oligosaccharide, nod factor, induces transient calcium influx in soybean suspension-cultured cells. Plant J. 22: 71-78

Abstract
Full text
PDF

Ezura, H., K. Yuhashi, T. Yasuta, and K. Minamisawa (2000): Effect of ethylene on Agrobacterium tumefaciens-mediated gene transfer to melon. Plant Breeding 119: 75-79


Constancio A, Kubota M, Minamisawa K, Akao S (2000) Analysis of the Bradyrhizobium nod gene-inducers from soybean super/hypernodulating mutants. Soil. Microorganisms 54:81-86.

Yagi K, Matsumoto T, Chujo T, Nojiri H, Omori T, Minamisawa K, Nishiyama M, Yamane H (2000) Isolation and characterization of low-indole-3-acetic acid-producing mutants from Bradyrhizobium elkanii. Biosci. Biotechnol. Biochem. 64: 1359-1364.

Abstract
Full text
PDF

Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46 (4) (617-629)

Nukui N, Ezura H, Yuhashi K, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41 (7) (893-897)

Abstract
Full text
PDF

Ezura, H., Nukui, N, Yuhashi, K. and Minamisawa, K (2000) In vitro plant regeneration in Macroptilium atropurpureum, a legume with a board symbiont range for nodulation. Plant Sci 159: 21-27

Abstract
Full text
PDF (505 K)

Yuhashi K, Ichikawa N, Ezura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66: 2658-2663

Abstract
Full text
PDF

Yokoyama T, Kobayashi N, Kouchi H, Minamisawa K, Kaku H, Tsuchiya K (2000) A lipochito-oligosaccharide, nod factor, induces transient calcium influx in soybean suspension-cultured cells. Plant J 22: 71-78

Abstract
Full text
PDF

Ezura H, Yuhashi K, Yasuta T, Minamisawa K (2000) Effect of ethylene on Agrobacterium tumefaciens-mediated gene transfer to melon. Plant Breeding 119: 75-79

Minamisawa K, Nakatsuka Y, Isawa T (1999) Diversity and field site variation of indigenous populations of soybean bradyrhizobia in Japan by fingerprints with repeated sequences RSƒฟ and RSƒภ. FEMS Microbiol Ecol 29: 171-178

Abstract
Full text
PDF

Isawa T, Sameshima R, Mitsui H, Minamisawa K (1999) IS1631 occurrence in Bradyrhizobium japonicum highly reiterated sequence-possessing strains with high copy numbers of repeated sequences RSƒฟ and RSƒภ. Appl Environ Microbiol 65: 3493-3501

Abstract
Full text
PDF

Yasuta T, Satoh S, Minamisawa K (1999) New assay for rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase. Appl Environ Microbiol 65: 849-852

Abstract
Full text
PDF

Minamisawa K, Isawa T, Nakatsuka Y, Ichikawa N. (1998) New Bradyrhizobium japonicum strains that possess high copy numbers of the repeated sequence RSƒฟ. Appl Environ Microbiol 65: 1845-1851

Abstract
Full text
PDF

Saito A, Mitsui H, Hattori R, Minamisawa K, Hattori T (1998) Slow-growing and oligotrophic soil bacteria phylogenetically close to Bradyrhizobium japonicum. FEMS Microbiol Ecol 25: 277-286

Abstract
Full text
PDF

Hattori, T.; Mitsui, H.; Hattori, R.; Shikano, S.; Gorlach, K.; Kasahara, Y.; and Elbeltagy, A. (1997) Analysis of the bacterial community according to colony development on solid media.In: Microbial communities, Functional, Versus and Structural approaches. Insam, H. and Rangger, A. (Editors). Spring-Verlag. Berlin Hiedelberg. New York. pp 229-235.

Minamisawa K, Onodera S, Tanimura Y, Kobayashi N, Yuhashi K, Kubota M (1997) Preferential nodulation of Glycine max, Glycine soja and Macroptilium atropurpureum by two Bradyrhizobium species japonicum and elkanii. FEMS Microbiol Ecol 24: 49-56

Abstract
Full text
PDF

Yuhashi K, Minamisawa K, Minakawa Y, Tobias DJ, Kubota M, Akao S (1997) Nodulation and competitiveness of gusA-marked Bradyrhizobium japonicum A1017 in soybean. Soil Sci Plant Nutr 43: 473-478

Mitsui H, Gorlach K, Lee H, Hattori R, Hattori T (1997) Incubation time and media requirements of culturable bacteria from different phylogenetic groups. J Microbiol Methods 30: 103-110

Hattori T, Mitsui H, Haga H, Wakao N, Shikano S, Gorlach K, Kasahara Y, El-beltagy A, Hattori R (1997) Advances in soil microbial ecology and the biodiversity. Antonie van Leeuwenhoek 72: 21-28

Mitsui H, Hattori R, Watanabe H, Tonosaki A, Hattori T (1997) Na+-induced structural change of a soil bacterium, S34, and Ca2+ requirement for preserving its original structure. J Bacteriol 179: 3350-3353

Abstract
Full text
PDF

Minamisawa K, Ogawa K, Fukuhara H, Koga, J (1996) Indolepyruvate pathway for indole-3-acetic acid biosynthesis in Bradyrhizobium elkanii. Plant Cell Physiol 37: 449-453

Minamisawa K, Ebihara K (1996) Hydrogenase activity of soybaen nodules doublely infected with Bradyrhizobium japonicum and B. elkanii. Soil Sci Plant Nutr 42: 917-920



BACK

@