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Abstract

Bradyrhizobium elkanii produces rhizobitoxine, an enol-ether amino acid, which has been regarded as a phytotoxin because it
causes chlorosis in soybeans. However, recent studies have revealed that rhizobitoxine plays a positive role in establishing symbiosis
between B. elkanii and host legumes: rhizobitoxine enhances the nodulation process by inhibiting ACC (1-aminocyclopropane-
1-carboxylate) synthase in the ethylene biosynthesis of host roots. B. elkanii rtxA and rtxC genes are required for rhizobitoxine
production. In particular, rtxC gene is involved in the desaturation of dihydrorhizobitoxine into rhizobitoxine. A legume with a
mutated ethylene receptor gene produced markedly higher numbers of rhizobial infection threads and nodule primordia. Thus,
endogenous ethylene in legume roots negatively regulates the formation of nodule primordia, which is overcome by rhiozbitoxine.
Although a plant pathogen Burkholderia andropogonis has been known to produce rhizobitoxine, the genome sequence of
Xanthomonas oryzae showed the existence of a putative rhizobitoxine transposon in the genome. The cumulative evidence suggests
that rhizobitoxine-producing bacteria modulate plant–microbe interactions via ethylene in the rhizosphere and phyllosphere
environments. In addition, rhizobitoxine-producing capability might be utilized as tools in agriculture and biotechnology.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the symbiotic nitrogen-fixation process, bacteria of
the family Rhizobiaceae convert atmospheric dinitrogen
(N2) to ammonia (NH3), which can be effectively utilized
by host legume plants. The family Rhizobiaceae cur-
rently includes six genera: Rhizobium, Sinorhizobium,
Mesorhizobium, Allorhizobium, Azorhizobium, and
Bradyrhizobium, which are collectively referred to as
rhizobia. They have the ability to infect the roots of
legumes and to produce nodules. The differentiated
forms of rhizobia in the nodule, called bacteroids, fix
atmospheric nitrogen into ammonia and export the fixed
nitrogen to the host plant (Long, 1989). Symbiotic ni-
trogen fixation is of great importance not only in the
production of leguminous crops but also in the global
nitrogen cycle.

Nitrogen-fixing nodules are formed as a consequence
of a series of interactions between rhizobia and legu-
minous host plants (Fisher and Long, 1992). The sym-
biotic partners show a high degree of mutual specificity,
mediated by the exchange of chemical signals (Spaink,
1996, 2000). The plant signals, flavonoids excreted by
the roots, activate the expression of nodulation genes in
rhizobia, resulting in the production of rhizobial lipo-
chitooligosaccharide signals called Nod factors. Al-
though legumes form root nodules mainly in response to
Nod factors, it has been thought that the plant perception
of endogenous signals, particularly plant hormones, is
also important for the establishment of proper symbiotic
interactions between rhizobia and legumes (Caetano-
Anolles and Gresshoff, 1991).

2. Effect of ethylene on nodulation

Ethylene is produced and sensed in response to a
wide variety of environmental and developmental cues,
including germination, flowering, drought, pathogen
attack, and nodulation (Abeles et al., 1992; Spaink,
1997). In particular, ethylene inhibits infection of rhi-
zobia and nodulation of most legumes, as shown by
many studies (Okazaki et al., 2004a). Exogenously
applied ethylene or ethylene precursor inhibits nodula-
tion in many legumes. In Pisum sativum, exogenous
ethylene application inhibits elongation of infection
threads into the inner cortex (Lee and LaRue, 1992b).
In P. sativum, endogenous ethylene exerts positions on
nodule meristem morphogenesis (Heidstra et al., 1997).
Inhibition of ethylene synthesis and responses has been
shown to enhance nodule formation in Medicago
truncatula (Oldroyd et al., 2001), Medicago sativa
(Nukui et al., 2000; Peters and Crist-Estes, 1989), Lotus
japonicus (Bras et al., 2000; Nukui et al., 2000), P.
sativum (Guinel and Sloetjes, 2000; Lorteau et al.,
2001), and Macroptilium atropurpureum (Nukui et al.,
2000). In addition, a hypernodulating mutant of M.
truncatula has ethylene-insensitive phenotypes (Pen-
metsa and Cook, 1997). Unlike in most legume species,
however, ethylene may not play a significant role in the
nodulation of modern soybean cultivars (Hunter, 1993;
Schmidt et al., 1999). Ethylene evolution in legume
roots increases after application of rhizobial cells
(Ligero et al., 1986; Suganuma et al., 1995), Nod
factor (van Spronsen et al., 1995), nitrate (Caba et al.,
1998; Ligero et al., 1987), and illumination (Lee and
LaRue, 1992a), suggesting that these environmental
factors control nodulation through their effects on the
levels of ethylene.

3. Biochemical functions of rhizobitoxine

In 1956, Erdman et al. (1956) first reported that
certain strains of rhizobia induce chlorosis in new leaves
of soybeans. Owens and colleagues (Owens and Wright,
1965a,b) purified the toxic compound from nodule
extracts and culture media of Rhizobium japonicum
(now Bradyrhizobium elkanii) and demonstrated that the
compound is phytotoxic to soybeans (Johnson et al.,
1959; Owens, 1973). The toxic compound was later
called rhizobitoxine. Among soybean bradyrhizobia, all
strains of B. elkanii (formerly DNA homology group II)
produce rhizobitoxine, whereas those of B. japonicum
(formerly DNA homology group I) do not produce
rhizobitoxine at all (Hollis et al., 1981; Minamisawa,
1989, 1990; Minamisawa and Mitsui, 2000). Rhizobi-
toxine has therefore been regarded as a phytotoxin that
causes chlorosis symptoms in soybeans.

The structure of rhizobitoxine was solved in 1972
(Owens et al., 1972b). Rhizobitoxine is an enol-ether
amino acid (2-amino-4-[2-amino-3-hydroxypropoxy]-
trans-3-butenoic acid) with a molecular weight of 190
(Fig. 1). The first biochemical function identified for
rhizobitoxine was that of an inhibitor of β-cystathionase
in the methionine biosynthesis pathway (cystathionine
β-lyase, E.C.4.4.1.8) (Fig. 1). β-Cystathionase catalyzes
the conversion of cystathionine to homocysteine, pyruvate,
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and ammonium. As an analog of cystathionine, rhizobi-
toxine irreversibly inhibits β-cystathionase in bacteria
(Owens et al., 1968) and plants (Giovanelli et al., 1972).

Yasuta et al. (1999) found that rhizobitoxine also
strongly inhibits 1-aminocyclopropane-1-carboxylate
(ACC) synthase (E.C.4.4.1.14) in the ethylene biosyn-
thesis pathway (Fig. 1), which can explain the early
observation of rhizobitoxine inhibition of ethylene
evolution in apple tissues (Owens et al., 1971). ACC
synthase is the rate-limiting enzyme in ethylene bio-
synthesis in plants, catalyzing the conversion of S-
adenosylmethionine to ACC. A closely related ethoxy
analog of rhizobitoxine, aminoethoxyvinylglycine
(AVG), also inhibits ACC synthase (Devine and
Breithaut, 1980; Yasuta et al., 1999). The oxidized
form of rhizobitoxine (dihydrorhizobitoxine) is approx-
imately 99% less potent than rhizobitoxine as an inhi-
bitor of ACC synthase, so the double bond between C3
and C4 may be critical for the inhibition of ACC syn-
thase (Yasuta et al., 1999).

4. Positive role of rhizobitoxine production in
symbiosis

Rhizobitoxine has been regarded as a phytotoxin ever
since the discovery that it induces chlorosis to soybeans.
However, recent studies have shown a positive role of
rhizobitoxine in the symbiosis between B. elkanii strains
and their host legumes. Yuhashi et al. reported that
rhizobitoxine production in B. elkanii USDA94 reduces
ethylene evolution from the associated roots of M.
Aspartate

Homoserine

Cystathionine

Homocysteine

Methionine

β-cystathionase

S

S

S3

SAM

S3

Ado

+

Methionine 
biosynthetic

pathway

Ethyl

Fig. 1. Rhizobitoxine inhibition in methonine and ethylene biosynthetic pa
carboxylate.
atropurpureum (siratro) and enhances nodule formation
by using B. elkanii USDA94 and its mutant lacking
rhizobitoxine production (Yuhashi et al., 2000). In
particular, the nodulation competitiveness of B. elkanii
USDA94 was significantly enhanced by rhizobitoxine
production. Duodu et al. also reported a positive role of
rhizobitoxine in the symbiosis between B. elkanii
USDA61 and Vigna radiata (mungbean) (Duodu et al.,
1999). Rhizobitoxine-minus mutants of USDA61 formed
dramatically fewer mature nodules than the wild-type
strain. Interestingly, the rhizobitoxine-minus mutants
induced many immature nodules, indicating that the initial
stages of root hair infection were not impaired but that the
development to mature nodules was obstructed. Therefore,
ethylene might affect abortion of the developing nodules in
the association between USDA61 and mungbean, and
rhizobitoxine production by the bacterium would over-
come this effect by inhibiting ethylene biosynthesis.

Another study on rhizobitoxine and nodulation was
carried out by Parker et al. using Amphicarpaea (Parker
and Peters, 2001). Nodulation experiments using B.
elkanii USDA61 and its rhizobitoxine-minus mutants
revealed that efficient nodulation in A. edgeworthii but
not in A. bracteata is highly dependent on rhizobitoxine
production.

5. Rhizobitoxine biosynthesis genes and pathway

The genes involved in rhizobitoxine biosynthesis
have been identified in two B. elkanii strains, USDA61
(Ruan and Peters, 1992) and USDA94 (Yasuta et al.,
Rhizobitoxine

ACC synthase ACC Ethylene
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thway. SAM, S-adenosylmethionine; ACC, 1-aminocyclopropane-1-
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2001). Ruan et al. isolated Tn5-induced rhizobitoxine-
null mutants of B. elkanii USDA61 and identified the
rtxA gene, which is responsible for rhizobitoxine bio-
synthesis in culture and in planta (Ruan and Peters,
1992). Yasuta et al. (2001) cloned and sequenced the
genetic locus involved in rhizobitoxine biosynthesis
from B. elkanii USDA94, which produces more rhizobi-
toxine than USDA61 in culture. B. elkanii USDA94
possesses several open reading frames (ORFs) down-
stream of the rtxA gene. A large deletion mutant of B.
elkanii, USDA94Δrtx::Ω1, which lacks rtxA, rtxC, and
the downstream ORFs, does not produce rhizobitoxine,
dihydrorhizobitoxine, or serinol. The latter two com-
pounds have been found to be co-produced with rhizobi-
toxine and are regarded as intermediates (Minamisawa
and Watanabe, 1986; Owens et al., 1972a; Yasuta et al.,
2001). Complementation analyses with cosmids con-
taining an insertional mutagenesis within the putative
rtx operon suggested that (i) at least rtxA and rtxC are
necessary for rhizobitoxine production in B. elkanii,
(ii) the newly discovered rtxC gene, which is located
immediately downstream of the rtxA gene, is involved in
desaturation of dihydrorhizobitoxine into rhizobitoxine,
and (iii) other ORFs downstream of rtxC affect the
levels of production of rhizobitoxine and its intermedi-
ates by unknown functions.

Large amounts of dihydrorhizobitoxine are generally
co-produced with rhizobitoxine (Minamisawa and
Kume, 1987; Owens et al., 1972a). However, no con-
clusive data have been reported on the biological effects
of dihydrorhizobitoxine in planta. Okazaki et al. (2004b)
demonstrated that dihydrorhizobitoxine production does
not affect the plant phenotypes of B. elkanii USDA94 in
terms of nodulation competitiveness and chlorosis
induction. They thus concluded that desaturation of
Bradyrhizobium elkanii USDA94 

rtxA rtxC

Xanthomonas oryzae pv. oryzae KACC1033

N-domain C-domain

Identity (%) 55.2 72.6 64.5

ISXo5

Fig. 2. Comparison of rtx genes in Bradyrhizobium elkanii USDA94 and Xan
carried out using sequence of rtx genes in B. elkanii USDA94 (accession n
AE013598). Arrows show rtx genes and predicted open reading frame (ORF
amino acids sequences. ISXo5 and IS113 are insertion sequences with transp
dihydrorhizobitoxine by an rtxC-encoded protein is
essential for the bacterium to elicit these phenotypes in
planta.

6. Rhizobitoxine-producing pathogens

Aplant pathogen,Burkholderia andropogonis, is also
known to be a rhizobitoxine producer. The pathogen
causes chlorotic symptoms in corn and sorghum, pre-
sumably as a result of rhizobitoxine production in planta
(Mitchell and Frey, 1988). Recently, rtx genes found in
the genome of Xanthomonas oryzae pathovar oryzae
KACC10331 (Lee et al., 2005), a bacterium that causes
bacterial blight in rice (Oryza sativa L.), although the rtx
genes were misannotated (Lee et al., 2005). Amino acid
sequences of rtxA and rtxC genes are highly homologous
with those of B. elkanii (Fig. 2). The rtx gene clusters in
X. oryzae and B. elkanii, contained additional two genes
that are relevant to glutamine (ORF2; Glutamine amido-
transferase, ORF4; Glutamine synthetase). These genes
probably supply glutamine-related substrates for rhizo-
bitoxine biosynthesis (Sugawara et al., unpublished re-
sults). From the comparison, we expect rhizobitoxine
production in X. oryzae KACC10331. Interestingly, the
rtx gene cluster in X. oryzae pv. oryzae KACC10331
resides between two insertion sequences (ISs), and
formed a composite transposon structure for rhizobi-
toxine biosynthesis (Fig. 2). Therefore, such rhizobi-
toxine transpson may transfer to other plant-associated
bacteria in the environments.

7. Nodulation enhancement via ethylene perception

Rhizobitoxine is secreted outside rhizobial cells and
delivered to the plant. In fact, rhizobitoxine has been
ORF2 ORF3.1 ORF3.2 ORF4

1 kb
1

48.8 30.3

IS1113

thomonas oryzae pv. oryzae KACC10331. Sequence comparison were
o. AB062279) and X. oryzae pv. oryzae KACC10331 (accession no.
s). Numbers in the middle space indicate percent identity based on the
osase gene (Lee et al., 2005).
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detected in leaves as well as in nodules of soybeans
inoculated with B. elkanii (Minamisawa and Kume,
1987). Moreover, ethylene evolution is blocked in le-
gume root systems inoculated with B. elkanii (Yuhashi
et al., 2000). Therefore, the explanation of how rhizobi-
toxine decreases endogenous levels of ethylene in le-
gume roots appears straightforward.

The next question is how a decreased ethylene level
enhances nodulation. Recently, several models have
been proposed depicting the relationships between
signal transduction, ethylene sensing, and the develop-
ment of nodulation (Gresshoff et al., 2003; Guinel and
Geil, 2002; Stearns and Glick, 2003). One promising
approach will be to construct transgenic legumes with
altered ethylene sensitivities. The expression of ethylene
receptors that cannot bind ethylene confers reduced
ethylene sensitivity to heterologous plants in a geneti-
cally dominant manner (Bleecker, 1999). In petunia and
tomato, transformation with a mutant Arabidopsis
ethylene receptor gene (etr1-1) conferred reduced
sensitivity to ethylene (Wilkinson et al., 1997).

To address the mechanism by which ethylene inhibits
nodulation, Nukui et al. (2004) transformed L. japonicus
B-129 ‘Gifu’ (Handberg and Stougaard, 1992) with a
mutated ethylene receptor gene Cm-ERS1/H70A: A point
mutation was introduced into the melon ethylene receptor
Cm-ERS1 (Sato-Nara et al., 1999) by changing the 70th
amino acid, histidine, to alanine, which abolished its
ethylene-binding ability. The resultant transgenic L.
japonicus plants showed reduced ethylene sensitivity.

When inoculated with M. loti, the transgenic L.
japonicus produced markedly higher numbers of in-
fection threads and nodule primordia on their roots than
did either wild-type or azygous plants without the trans-
gene. In addition, the amount of transcripts of NIN, a
gene governing formation of infection threads (Schauser
et al., 1999), increased in the inoculated transgenic plants
as compared with the wild-type plants. These results
imply that endogenous ethylene in L. japonicus roots
inhibits the formation of nodule primordia, as well as
other infection processes (Nukui et al., 2004).

8. Alternative strategy for decreasing ethylene

The ability to synthesize rhizobitoxine is confined to
the slow-growing B. elkanii among rhizobia so far.
Thus, Yasuta et al. (1999) addressed the question as to
whether fast-growing rhizobia possess another inhibi-
tory factor for ethylene biosynthesis of host plants,
because it could enhance nodulation (Nukui et al.,
2000). They sought potential enzymes and compounds
for reducing ethylene biosynthesis from the entire
genome of the fast-growing M. loti MAFF303099
presented in a database (Kaneko et al., 2000), and
identified ACC deaminase gene as a candidate (Uchiumi
et al., 2004). Indeed, ACC deaminase was verified to
enhance nodulation and competitiveness to the host
legume by using a disruption mutant of ACC deaminase
gene (mlr5932) (Uchiumi et al., 2004). Recently, genes
encoding ACC deaminase have been also found in other
rhizobia, such as Rhizobium leguminosarum and B.
japonicum (Kaneko et al., 2002; Ma et al., 2003a,b).
ACC deaminase from R. leguminosarum bv. viciae has
been confirmed to enhance nodulation of P. sativum as
well (Ma et al., 2003a). These recent findings on ACC
deaminase suggest that rhizobia can adopt more than
one strategy to reduce the amount of ethylene syn-
thesized by their host legumes and thus enhance nodule
formation. Indeed, since many processes in nodule for-
mation are blocked by ethylene, it seems reasonable
that, in order to enable efficient nodulation, rhizobia
would decrease ethylene levels by producing both ACC
deaminase and rhizobitoxine.

9. Concluding remarks

The cumulative evidence reveals general strategies
by which rhizobia produce an inhibitor and an enzyme
to decrease ethylene levels in host roots and thereby
enhance nodulation. Plant pathogens, such as B.
andropogonis and X. oryzae, probably produce rhizo-
bitoxine to inhibit ethylene biosynthesis and reduce
defense reactions by the host plants. The existence of
putative rhizobitoxine transposon in X. oryzae genome
prompts us to speculate that more plant-associated bac-
teria produce rhizobitoxine and modulate plant–microbe
interactions in the rhizosphere and phyllosphere
environments.

If some rhizobial strains lack the ability to decrease
ethylene levels in host legumes, the introduction of
genes for rhizobitoxine biosynthesis and ACC deami-
nase into these rhizobia ought to enhance their sym-
biotic interactions with host legumes. This idea may also
be extended to other plant-associated bacteria, such as
Rhizobium radiobacter (formerly Agrobacterium tume-
faciens), which has been used for plant transformation.
Indeed, application of AVG, an analog of rhizobitoxine,
increased the efficiency of Agrobacterium-mediated
gene transfer to explants of melons (Ezura et al.,
2000). The ethylene-decreasing strategies of rhizobia
are interesting and suggestive for the further under-
standing of plant–microbe interactions and should be a
promising tool for overcoming the problem of rhizobial
competition and for making further progress toward
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developing more environmentally friendly biotechnol-
ogy and agriculture.
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